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The two-dimensional flow of a thin film down a vertical or tilted plane wall into an 
infinite pool is studied in the Stokes approximation, the principal aim being to 
determine the shape of the fluid surface. Results are obtained for fluids with or 
without surface tension. Earlier results by Ruschak, that the surface tension gives 
rise to thickness variation of the film, are confirmed. For small or vanishing surface 
tension a dip of the pool surface is found to exist close to the wall. The case of a wall 
moving downwards is also considered. 

1. Introduction 
Consider a film of a Newtonian fluid flowing steadily down a plane wall into a large 

pool. The wall may be vertical or tilted and it may be at rest or moving upwards 
or downwards in its own plane. In  this paper we study such a flow in the Stokes 
approximation. Our principal aim is to determine the shape of the free surface of the 
fluid. 

If the wall is moving upwards so fast that fluid is being withdrawn from the pool 
rather than flowing into it, the flow is called a coating flow because of its application 
in industrial coating processes. A review of work on this and other types of coating 
flows has recently been given by Ruschak (1985). Here we are interested in 
phenomena which occur if the wall is at rest or moving downwards. So we shall 
primarily consider these cases. 

It has been observed by Cook & Clark (1973) and others that when a thin film flows 
down a wall into a pool a system of waves may exist on its surface just above the 
region where the film merges with the pool. The waves were investigated theoretically 
by Ruschak (1978), who was able to explain them as being caused by pressure 
gradients set up by the surface-tension forces. In  his analysis Ruschak divided the 
flow field into two regions, the film and the pool, and used different approximations 
in them. In the film he used lubrication theory to derive an ordinary differential 
equation for the film thickness. In the pool he neglected the dynamic forces so that 
the surface shape was governed by the differential equation for a hydrostatic 
meniscus with surface tension. Assuming that an intermediate region exists in which 
both approximations apply, he determined an approximation to the complete fluid 
surface. When solving his equations numerically, Ruschak found that a system of 
waves with the amplitude rapidly diminishing in the upward direction existed on the 
film. A plot presented in the paper shows the first of the waves and it is seen that 
at the trough just above the pool surface the film is considerably thinner than a t  
infinity. Another plot shows that the minimum thickness decreases and the maximum 
thickness (which is assumed at the crest of the first wave) increases, as the surface 
tension is increased, a fact which supports Ruschak’s explanation of the phenomenon, 
of which we shall give an account later. 
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More recently Wilson & Jones (1983) have studied the wave system using the 
method of matched asymptotic expansions to solve Ruschak’s differential equation 
for the film thickness in the limit of large surface tension (i.e. /?+ 00, in the notation 
introduced below). They found that in order that the film can merge with a 
hydrostatic membrane its thickness must first undergo an indefinite large number 
of nonlinear ‘leaps’, the sizes of which, however, are such that only one or two 
waves should be expected to be seen in experiments and numerical solutions. Their 
analysis also showed that an estimate of the minimum film thickness, which Ruschak 
had given and confirmed by his numerical results, was asymptotically correct. 
Finally, they extended the investigation to the case of a downward moving wall in 
order to see if such a motion would cause a dip in the pool surface or other changes 
which might indicate the onset of air entrainment observed to occur in practice in 
such situations. However, in the limit which they considered, they found no such 
behaviour. 

The present investigation differs from those of Ruschak and Wilson & Jones in that, 
apart from the Stokes flow approximation, no physical approximations are 
introduced in the analysis. Our numerical results correspond to values of the surface 
tension which are considerably smaller than those considered by Ruschak. They 
support his explanation of the thinning of the film and agree as closely aa might be 
expected with Wilson & Jones’ asymptotic theory. Like Wilson & Jones we extend 
our analysis to moving walls and find that a dip in the surface does indeed occur under 
certain circumstances. Finally we extend the investigation to non-vertical walls. Our 
method of solution is based on an integral formula for the stream function and an 
integral equation for the fluid velocity in the surface. A brief account of our method, 
but with no numerical results included, has previously been given by Hansen (1985). 
Kelmanson (1983) has solved other Stokes-flow free-surface problems using an 
integral-equation method which, however, is different from the one used here. 

2. The problem 
In our analysis we use an (2, y)-coordinate system of which the x-axis is on the wall 

with positive direction towards the pool as indicated in figure I. The origin is at the 
intersection between the wall and the horizontal asymptote of the pool surface which, 
we suppose, extends to infinity. The angle between the wall and the vertical is denoted 
by 6,. The wall moves in its own plane with a velocity u towards the pool. Then the 
flux, c, into the pool per unit length across the wall is positive if u is larger than a 
certain negative value. 

We aasume the fluid to  be Newtonian and incompressible with dynamic viscosity 
p, density p, and surface tension constant c, and that the absolute values of u and 
c are small enough to make the Stokes approximation applicable throughout the 
entire fluid region. Then the pressure, p, and the stream function, $, which is defined 
so that the velocity is equal to ($v, -$J, satisfy the equations 

- aP = p-+pg aA$ cos6,, - aP = -p-- ps sin@,, 
ax ay a Y  ax 

where g is the acceleration of gravity. We satisfy the no-slip boundary condition by 
requiring that $ = - c  and $v = u on the wall. Then $ = 0 in the surface. We put 
the external pressure equal to zero. Then the boundary conditions that the shear 
stress vanishes and the normal stress balances the surface-tension force per unit area 
also hold in the surface. The surface-tension force per unit area is equal to BK, where 
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FIQURE 1. A film of thickness h, is flowing down a wall into tm infinite pool. The wall is moving 
downwards with velocity u. 

K is the curvature of the intersection, C, between the surface and the (z, y)-plane. At 
a point on C with unit tangent and normal vectors T and N respectively, the two 
stress conditions may be expressed as 

The Cartesian derivatives a2/i3!P and a2/aT aN are expressed in terms of derivatives 
with respect to the arc length 8 and in the normal direction as 

Therefore, and because $ = 0 in the surface, the two conditions in (2.2) can also be 
written 

For x+- m the film thickness approaches a constant value h,, say, and the fluid 
velocity becomes parallel to the wall. It therefore follows from (2 .1)  and the boundary 
conditions that the flux can be expressed as 

(2.5) 
pghi cos8, 

3P 
c = $,+h,u where $, = 

We write the problem defined above in a non-dimensional form by measuring all 
lengths in units of h,, $ in units of $,, and p in units of the quantity po = p$,/h;. 
The problem is then expressed by the following equations and conditions in which 
the non-dimensional variables are denoted by the same symbols as the corresponding 
dimensional ones : 
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in the fluid region, 

Y, 
a$ $=-1-y ,  -= 
a Y  

on the wall (y = 0), and 

in the surface. The parameters in (2.6), (2.7), and (2.8) are 

3u y=- .  h0u 
= pght cos 9, ’ $0 

a = tan$,, 

It follows from (2.6) that $ is biharmonic. 
In the non-dimensional coordinates the fluid surface approaches y = 1 and 

$- Q, = -+J~ +b2 + yy - y - 1 is an asymptotic representation of the stream function 
as x+- 00. Thus, the surface velocity approaches the value w - ~  = y+f as x+-00. 
As boundary condition at infinity in the pool it is sufficient to require that the velocity 
remains finite, that is that $ = O(r) .  

3. The method of solution 

from an integral-equation formulation of our problem. 

the fluid region can be expressed as a contour integral, 

We determine the shape of the fluid surface and the flow velocity in the surface 

Since the stream function, $, is biharmonic its value at an arbitrary point, ro, in 

Here 352 is an arbitrary closed curve in the fluid region encircling ro, G = G(r, ro) is 
a fundamental solution to the biharmonic equation, and a/aN denotes differentiation 
in the outward normal direction to 852. Formula (3.1) is derived by straightforward 
applications of Green’s second identity. We use (3.1) with al2 consisting of the z-axis 
and the intersection, C, between the surface and the (2, y)-plane, al2 being closed by 
a line section x = -x- < 0 and a circular arc r = r+ in the pool. For G we choose the 
function 

where r = (2, y) and ro = (xo, yo). With this choice, G = aG/ay = 0 on y = 0. 
When the asymptotic approximation $-Q, found in the previous section is 

substituted for $ in (3.1) the contribution from z = -x- vanishes for x-+ 00. For 
r++ 00 we use the boundary condition $ = O(r)  and assume that, correspondingly, 
the order of magnitude of a$/aN, A$, and aA$/aN are O ( P ) ,  O(r-2),  and O ( P )  
respectively. Then the contribution from the arc r = r+ also vanishes in the limit 
r++ 00. Thus we may replace 852 in (3.1) by the entire x-axis and the surface contour 
C. On the x-axis, the first two terms in the integrand vanish since G = aG/ay = 0, 
and a$/aN and $ are known from the boundary conditions in (2.7). Therefore, the 
integral along y = 0 can be evaluated analytically to be - 1 -y+yyo. By means of 
the boundary conditions the integral along C can be rewritten so that a$/aN becomes 
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the only unknown in the integrand. To do so we first use (2.6) and (2.8) in the first 
term in the integrand and integrate by parts twice. We thereby get: 

Jc g a d s  = Jc k-3(Tz-aT,) 1 Gds, 

1 ds, (3.3) 

where T, and T, are the components of the unit tangent vector to C. The end-point 
contributions vanish, since p, aG/ax, and aG/ay go to zero while a$/aN and G are 
bounded at both ends of C. The second term in the integrand is expressed in terms 
of a$/aN by means of the second boundary condition in (2.8). Finally, the last term 
in the integrand in (3.1) vanishes, since $ = 0 on C. Collecting these results and 
applying the left-hand formula in (2.3) we may therefore write (3.1) as 

@(ro) = 

where w(s) = a$/aN is the flow velocity in the surface. 
From (3.4) we derive an integral equation by forming the derivative of the two 

sides in the direction of N', which is the outward unit normal vector to C a t  the point 
r'. When, thereafter, we let ro approach r' we obtain the equation 

where 

f(s') = yN,(s')+ -3(T,-aT )- ds. 
y a r  "1 

Since $ = 0 on C, the right-hand side of (3.4) vanishes for points r, on C, if the 
surface velocity determined by (3.5) is inserted in (3.4). On the other hand, if the 
integrals in (3.4) and (3.5) are taken along a curve C' different from C, the solution 
to (3.5) is not, in general, equal to the velocity component along C', and the right-hand 
side of (3.4), with this solution inserted, does not, in general, vanish. Therefore, we 
solve our problem by adjusting the curve of integration in (3.4) and (3.5) until the 
right-hand side of (3.4) vanishes when the corresponding solution to (3.5) is inserted. 
When this is achieved, the curve of integration is the surface contour, C ,  and the 
solution to (3.5) is equal to the surface velocity. 

We start the iteration procedure, by means of which C is found, from an initial 
curve C, chosen in accordance with the known asymptotic properties of the surface. 
Thus, for x < x1 and for r = (x2+yB)t > r N ,  where x1 and r N  are suitably chosen 
constants, C,  coincides with the asymptotes y = 1 and x = y tan8, respectively. On 
the part of C, between the points < at (zl, 1) and PN at rN(sin8,, cos8,) we choose 
N-2 collocation points, &, P,, . . . , PN.-l. In the iterative procedure these N- 2 
points are allowed to move along the corresponding normals to C,, while the iterated 
curves all coincide with C, outside the interval between Pl and PN. Inside this interval 
the curves are approximated by a set of parabolas of which the one through pi has 
the same tangent and curvature as the circle through and q+l. On the 
asymptote y = 1 the unknown w in (3.5) is replaced by the asymptotic value, i+y ,  
of the surface velocity. On the asymptote x = y tan 8, w is replaced by the function 

(3.7) 
2 c0s8,-(n:-28,) sin8, l + y  2 cos 28, + 2 +- sin 28,  - x + 28, r ( x  - 28,) cos 28, + sin 28, * 
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This function was chosen for the following reason. Far out in the pool the flow field 
consists of two contributions. One of these is equal to the field in a fluid wedge with 
dihedral angle 8,, which is bounded by a moving wall and a free surface. The other 
one is caused by the fluid flux from the film. An asymptotic representation of the 
first contribution, valid far away from the vertex, was determined by Moffatt (1964). 
The corresponding stream function is of the form 

r f ( 8 )  = r(A cos8+Bsin8+C8 cos8+08  sin@), (3.8) 

where the angle 8 is defmed in figure 1. Since the flux from the fdm is independent 
of r ,  the second contribution can be derived from a stream function of the form 

g ( 8 )  =A+B8+Ccos28+Dsin26.  (3.9) 

When the sum rf (8) + g ( 8 )  is inserted in the boundary conditions in (2.7) and (2.8), 
which are applied at 8 = -6, and 8 = 0 respectively, f and g can be found. The 
function in (3.7) is the corresponding surface velocity. Between 4 and PN, v is 
expressed as a continuous function given by polynomials of degree one between 
consecutive points Pl, P,, . . . , PN. The value of the function at 4 is denoted by vi. 

Introducing the approximations described above and requiring the integral 
equation to be satisfied at the collocation points we obtain a set of linear algebraic 
equations with unknowns v,, ..., v ~ - ~  and coefficients depending on the shifts 
t,, . . ., tN-l of the collocation points along the normals of C,. The function found by 
solving the system is inserted in (3.4) whose right-hand side is evaluated at  the 
collocation points. By means of a method developed by Madsen (1975), and 
implemented in the subroutine VG02AD of the Harwell subroutine library, the 
surface is finally found by minimizing E = maxi I$*l, where +$ = $&, .. ., t N - l )  
denotes the value of the right-hand side of (3.4) at 4. 

In the numerical calculations, z1 and TN were chosen so that the surface was close 
to the asymptotes and vUt close to the asymptotic expressions at the first and the last 
several collocation points. In  order that this was achieved at the upper end, z1 had 
to be - 30, when B was large, and - 15 for /3 = 0. In  the pool, the asymptotic values 
are approached much slower so that, while r N  = 70 was a typical value, TN had in 
some cases to be increased to several hundreds. However, since v varies very slowly 
for large r ,  the number of collocation points then only had to be increased by a few. 
For each 8, considered, only a few trials were needed in order to find an initial curve, 
C,, consisting of a part of each asymptote and a connecting circular arc, so that the 
iteration procedure converged. Starting from the solution for B = y = 0 and stepping 
through intervals of/3 and y we could then obtain all the other results presented in 
the next section. While stepping through the parameter intervals we kept N relatively 
small, N = 26 being a typical value. For the sets of parameters, which were selected 
for presentation, the calculations were repeated once or more with N being 
increased until a further increase of N did not change the surface profile. The largest 
value used for N was 50. Apart from one exception to be mentioned later E was 
or less. The computations were carried out on the IBM 3081 computer at the Lyngby 
branch of the Danish University Computing Centre. As an example of the computing 
times we mention that with the surface profile for 8, = 0, /3 = 200, and y = 0 as the 
starting approximation and N = 28, the iteration procedure for obtaining the curve 
for 8, = 0, B = 210, and y = 0 required 50 s CPU time. This time could be reduced 
considerably since in the program the same matrix elements were computed several 
times, but it was decided that the intended use of the program did not warrant 
systematic attempts to minimize the computing time. 
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FIGURE 2. Surface profiles for 1 9 ~  = O", y = 0, and /3 = 0, 26, 50, 100, and 200. The locations of 
the collocation points for 1 = 200 are indicated by circles ( N  = 50) and cros868 ( N  = 28). 

4. Results and discussion 
By means of the method described in the preceding section we have determined 

the surface profile and surface velocity for several sets of values of the parameters 
9,) 8, and y. We now present and discuss some of these results. 

Figure 2 shows the surface profile for y = 9, = 0 (a fixed, vertical wall) and 8 
ranging from 0 (no surface tension) to 200. In order to indicate the accuracy of the 
results we have shown the positions of the collocation points for B =  200 and N = 28 
or 50 respectively. It is seen that within drawing accuracy the two sets of points fit 
nicely onto the same curve. A comparison between the curves for different values of 

shows that for larger surface tension the surface rises in a smoother curve so that 
the surface area is reduced. Another feature, whose explanation is lesa obvious, is the 
thinning of the film just above the point where the surface starts to curve away from 
the wall. It is this feature which has previously been studied and explained by 
Ruschak (1978). Briefly, his explanation can be put as follows. On the curved part 
of the surface, between the almost plane film and pool surfaces, the pressure is 
negative because of the surface tension. Consequently, there is a downward pressure 
grrtdient in the fluid at  the top end of the curved surface. However, since the flow 
is Stokesian, the forces acting on any part of the fluid must be in equilibrium. This 
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FIQURE 3. Velocity distributions along the surface for 8, = O", B = 200, and y = 0 and 5. Arc 
lengths are measured from the points where 5 = -25. The locations @-values) of the extrema are 
indicated at the curves. 

- 5  

is achieved by the thinning of the film in that region. Thereby the average velocity 
and, hence, the velocity gradient across the film are increased, so that the upward 
shear force from the wall exceeds the gravity forces enough to balance the downward 
pressure force. 

The results presented in figure 2 extend those found in Ruschak (1978) to smaller 
values of the surface tension. They agree with Ruschak's theory in that the thinning 
becomes less and less pronounced as /3 decreases and disappears when /3 vanishes. 

For /3 = 200 and 6, = y = 0 the surface velocity is shown in figure 3 as a function 
of the arc length. These results may serve as a partial check on the solution. It is 
seen that the velocity does indeed approach the asymptotic values 1.5 and 0 for 
x - t -  00 and y+ 00 respectively, and that it assumes a maximum value at the point 
of smallest thickness. By interpolation between the nearest collocation point we find 
that the extremum is located at x = - 12.3, and that the film thickness is 0.679 
and the surface velocity is 2.187 at this point. If the film thickness along the wall is 
ctssumed to be h = h(x) rather than unity, and the usual approximations of lubrica- 
tion theory are used, the velocity distribution is found to be 

(4.1) 
3 

V(Y) = 2ha(l+y(l--h))($h-y)y+y, 

if 6, = 0. For y = 0 and h = 0.679 the surface velocity computed from (4.1) is 2.209, 
which agrees nicely with the above value. The figure also shows that a t  2 = -21.8 
there is a local minimum of the velocity and a corresponding local maximum of the 
film thickness. Because of the scale used in figure 2 this maximum is, however, barely 
visible. Ruschak ascribes the presence of this thickening, too, to the mechanism 
described above. Similar maxima in thickness, which are too weak to be seen in the 
graphical presentation in figure 2, are found in the numerical results for B = 100, 50 
and 25. For those of the /3-values, for which the collocation points were distributed 

I I I I I 
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FIGURE 4. Surface profiles for #o = Oo, /3 = 0, and y = 0, 0.2, 0.34, and 0.377, and for 8, = Oo, 
= 1 ,  and y = 0. The locations of the collocation points for y = 0.377 are indicated by circles. 

Corresponding points on the profile for y = 0.377 and the velocity distribution in figure 5 are shown 
by letters A, B, C, and D. 

far enough up on the film, a second minimum, still weaker than the first two extrema, 
was also found. 

Wilson & Jones derived an asymptotic formula for the minimum film thickness 
which reads in our notation: h,, - 1.27/,&. According to  this formula hmin - 0.80 
and 0.75 for = 100 and 200, respectively, while the corresponding values found by 
the present method are 0.733 and 0.679. In  view of the fact that these /3-values could 
not be expected to be within the realm of validity of the asymptotic theory, the 
agreement seems quite good. 

A rather interesting feature of the surface profiles in figure 2 is the depression of 
the pool surface for /3 = 0. A larger scale plot of the surface profile around the 
depression is found in figure 4. If inertial forces were important, such a depression 
would hardly be surprising, but since they are neglected in Stokes approximation 
another explanation of the depression is needed. We propose the following one. As 
the fluid leaves the film, the streamlines fan out, so that the direction of the fluid 
velocity turns downwards with increasing depth. Although the speed decreases in 
downward direction so that, eventually, the vertical component, wz, of the velocity 
vanishes, there is an interval just below the surface where w, is increasing. Therefore, 
the normal derivative of the normal velocity component at the surface, aw,/aN, is 
positive, and the boundary condition p = 2 b,/aN then requires the pressure, too, 
to be positive. In the almost stagnant fluid far out in the pool the pressure increases 
in the downward direction, and it seems unlikely that the dynamic forces in the fluid 
are strong enough to reverse the direction of the vertical pressure gradient at points 
in the pool which are closer to the wall. Thus, in order that the pressure may be 
positive at the surface, the surface must be lower than at infinity. 

Our numerical results for the surface velocity, v, found by solving the integral 
equation allow us to quantify to some extent the above argument. For 

9 FLM 178 
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RIXJRE 5. Velocity distribution along the surface for 8, = Oo, B = 0, and y = 0 and 0.377. Arc 
lengths are measured from the points where y = 2. The point corresponding to the bottom of the 
depression for y = 0 is indicated by a vertical bar. 

8, = /3 = y = 0 the surface velocity is shown as a function of the arc length, 8 ,  in 
figure 5. The point corresponding to the bottom of the depression is indicated in the 
graph, and it is seen that dv/ds is negative there. From the numerical results we find 
that dv/ds = -0.297. From the boundary conditionp = 2av,/aNand the continuity 
equation it then follows that the pressure at  the bottom of the depression is 
pd  = -2dv/ds = 0.594. The left-hand equation in (2.6) shows that, at the same level 
as the bottom of the depression, x =  xd= 0.286, the pressure at infinity is 
p ,  = 3xd = 0.858. So, there exists a pressure difference p, -pd = 0.264 between 
infinity and the bottom of the depression, but the dynamic forces are strong enough 
to account for a difference of this size. Thus, integrating the equation to the right 
in (2.6), which may be written, p, = Av, for 8, = 0, along the line z = xd from the 
bottom of the depression at y = yd = 2.32 to infinity we get 

Since aw,/ay = 0 at infinity. The first term on the right-hand side of (4.2) is difficult 
to estimate, but the second one can again be evaluated from the data of the surface 
velocity, since -av,/ay = -dv/ds = 0.297 at the bottom of the depression. Thus this 
term is a little larger than the pressure difference. Consequently, the integral in (4.2) 
must be negative, which is reasonable, because v, is decreasing in the downward 
direction, and av,/ax = 0 everywhere in the plane pool surface so that aevy/aze must 
be negative at least in the plane surface itself. 

Figure 4 also shows that if /3 is increased to 1 the depression is much more shallow, 
but it should still be detectable in an experiment. Based on the following data for 
glycerine at 20 "C, which are given in (Weest 1982): p = 1.2613 g/cms, 
cr = 63.4 dynes/cm, and p = 14.90 g cm-l s-l, the value = 1 is obtained if the film 
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points are indicated by vertical bars. 
FIQURE 6. Surface profiles for 19~ = Oo, = 200, and y = 0, 5, 10, and 15. For y > 0 the stagnation 

thickness h, = 0.39 cm. The corresponding Reynold's number based on the film 
thickness and the surface velocity at infinity is 0.21. 

We now turn to the case of a wall moving downwards (y > 0). As mentioned in 
the introduction this case was investigated by Wilson & Jones (1983) in the limit of 
large surface tension. In  their analysis they had to introduce a further limitation 
which, in our notation, is expressed by the requirement that y//3 must be small, and 
they found no solutions exhibiting a depression of the surface. Since the formation 
of a depression requires the surface area to be increased, it is to be expected that if 
/3 is large, a depression can only be created if the wall velocity is large too. Indeed, 
as the results in figure 6 for = 200 show, even if the wall velocity is as large aa 15 
times the average of the fluid velocity relative to the wall, the surface elevation is 
only reduced to about 50 % of the corresponding one for a wall at rest. 

When y > 0 a circulating motion in the counterclockwise direction is set up in the 
pool, so that the surface velocity, v, approaches a negative value for y+m. Since 
v > 0 near the wall, a stagnation point must exist somewhere in between. The 
locations of the stagnation points are indicated on the curves in figure 6. Figure 3 
includes a graph of the surface velocity as a function of arc length for 9, = 0, 
/3 = 200, and y = 5.  The velocity vanes between the limits y + i  = 6.5 for x+-m 

9-2 
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and - 2y/n = - 3.18 for y + + 00. At x = - 11 .O the film takes its smallest thickness 
of 0.826 and the velocity reaches its maximum value of 8.33. At x = - 17.5 the film 
thickness has a local maximum of 1.019 and the velocity has a local minimum of 6.34. 
These values compare well with those found from formula (4.1). Thus, for y = 5, (4.1) 
gives the values v(h) = 8.40 for h = 0.826 and v(h) = 6.33 for h = 1.019. In  figure 3 
it is worth noting that the asymptotic velocity value in the pool is approached much 
slower for y = 5 than for y = 0. Therefore, it  was necessary in the computations to 
push the point, PN, beyond which the surface is replaced by its asymptote and the 
velocity by its asymptotic approximation, much further out for y = 5 than for y = 0. 
As a consequence, the computational work became much larger. 

Returning again to figure 6 we note that for a fixed /? a t  200 the thinning of the 
film becomes less and less pronounced as y is increased. This can also be explained 
along the lines of Ruschak's theory in connection with formula (4.1) from which the 
non-dimensional shear force per unit area of the wall is found to be 
v'(0) = 3(1+ y(1 -h)) /ha.  If h = 1, this force balances the gravity force on the fluid, 
which is 3h per unit area of the wall. If we put h = 1 - A  and assume that A 4 1,  
the upward resultant of the two forces per unit area is approximately equal to 
F = 3(3 + y) A .  Therefore, if a given downward pressure force is to be balanced by F, 
the necessary value of A is smaller the larger the value of y. 

For /? = 0 the influence of the wall motion on the surface profile is considerable. 
This is demonstrated in figure 4. To begin with, the changes from the profile for y = 0 
are only quantitative. Thus, in the profile for y = 0.2, which is typical for this 
interval, the depression is of the same general shape as that of y = 0, only deeper, 
and this development continues as y increases to about 0.34. In the further, short 
y-range, through which we have been able to continue the computations, appreciable 
changes occur only on the outer slope of the depression, which becomes steeper with 
a vertical part appearing when y is about 0.370, and eventually a projection starts 
to develop. It is tempting to imagine that this projection will continue to grow as 
y increases further, but we have not been able to obtain reliable results for y larger 
than 0.377. In  order to substantiate the result for the surface profile for y = 0.377 
we have chosen to show the location of the collocation points rather than just the 
curve through them. As is seen, in order to be able to reproduce the rather complicated 
shape around the projection it was necessary to concentrate many of the 50 
collocation points which were used in that neighbourhood. Even then it was not 
possible to reduce the error E below 8 x aa compared to the values lo-" or less 
which could easily be prescribed in other cases. When we attempted to consider larger 
values of y the smallest e-values for which convergence could be achieved increased 
rapidly and the corresponding distributions of the collocation points started to 
become erratic. 

In figure 5 the surface velocity for y = 0.377 is shown as a function of the arc length. 
In order to facilitate the comparison with the surface profile in figure 4 a number 
of corresponding points on the two curves are indicated. It is seen that as the 
depression is passed, the velocity drops to a local, positive minimum value almost 
a t  the salient point (B) of the projection, and that beyond that point the velocity 
stays very small (with a local maximum in C) until the stagnation point (D) is 
reached. Thereafter the velocity approaches monotonously the limiting value 
-2y/n = -0.240 at infinity. 

As examples of results for tilted walls we present some for 9, = 45'. Figure 7 shows 
the surface profile for /3 = 300. Since /? is inversely proportional to cos a,, this value 
corresponds approximately to the same values of cr, p, p,  and h, as does /? = 200 for 
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FIQURE 7. Surface profiles for a0 = 4 5 O ,  ,9 = 300, and y = 0. The asymptotes y = 1 and y = z 
are shown aa broken lines. 

FIGURE 8. Surface profiles for a0 = 4 5 O ,  B = 0, and y = 0 and 1. The aaymptotes y = 1 and y = 5 
are shown as broken lines. For y = 1 the Stagnation point is indicated by a vertical bar. 

8, = 0. A comparison with figure 2 shows that the surface curvature just below the 
film is larger when 6, =O" and /3= 200, than when 8, = 45" and /3 = 300. 
Consequently, the vertical pressure gradient in the lowest part of the film is larger 
in the first case. According to Ruschak's theory, the reduction in film thickness should 
then be larger, too. AEI the figures show, this is indeed the case. The computed 
minimum thicknesses are 0.679 for 1 9 ~  = 0" and /3 = 200 and 0.784 for 8, = 45" and 
/3 = 300. 

Figure 8 shows the profiles for /3 = 0 and y = 0 and 1. For y = 0 there is a 
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depression in the surface, but since its depth is only 0.02 it is almost invisible in the 
graph. For 8, = 45" the value of the derivative av,laN = -dv/ds at the bottom of 
the depression is only 0.16 so that the pressure at  the same point is 
p = 2 av,/aN = 0.32. Since the depression is almost non-existent, such a pressure is 
apparently small enough to be balanced by the pressure difference between the 
depression and infinity which is set up by the dynamic forces. 

For 8, = 45" the shear stress produced by the wall motion is not perpendicular to 
the surface. Consequently, the resulting change of the surface profile is smaller than 
if 8, = 0", and we were able to get convergent results for y up to and including y = 1. 

However, as will be noted, for 8, = 45' the influence of the wall motion stretches 
far out. Indeed, even for z x y x 200 the surface is still almost at the distance 0.1 
from the asymptote z = y. The results for this case also differed from all those for 
8, = 0" and y positive in that the distance, r N ,  from where the surface velocity is 
put equal to the asymptotic approximation had to be increased to 250 before the 
values of the velocity at the outermost collocation points were reasonably close to 
the asymptotic values. For 8, = 0" the approach to the asymptotic values is much 
faster. A possible explanation of this fact is that, as shown by Moffatt (1964), in a 
fluid wedge bounded by a moving wall and a free surface and with a dihedral angle 
less than about 78" (i.e. with 8, larger than about 12"), the biharmonic equation 
admits solutions corresponding to a system of eddies. So it is likely that the flux from 
the film generates such a flow in the pool. Although the eddies are damped with 
increasing distance from the film they will enlarge the interval which must be 
traversed before the asymptotic flow field dominates completely. 

The present work was initiated while the author was a guest at the Department 
of Mathematics, Stanford University. The author wishes to express his sincere 
gratitude to Julie Damms Studiefond for financial support and to Professor 
Joseph B. Keller for his hospitality during the stay. Thanks are also due to Drs P. S. 
Larsen and D. H. Peregrine for discussions of the results and to Dr K. Madsen for 
advice on the use of his optimization method. 
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